博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转)重识new
阅读量:5997 次
发布时间:2019-06-20

本文共 38404 字,大约阅读时间需要 128 分钟。

layout: post

title: 重识new
categories: C/C++
description: 重识new
keywords:
url: https://lichao890427.github.io/ https://github.com/lichao890427/

一、new primer

  new操作符并不是c++的专属,c运行库有new.h头文件。C++中的new操作符,众所周知是用来分配动态内存的,而要能达到“动态”这种灵活性的特征,非堆区莫属,因为堆区支持手动分配。如果内存空间不够,new操作符返回空,或抛出异常(下面会讲述3种new操作符,常规new操作符、定位new操作符和禁止抛出异常的new操作符,如果禁止抛异常,那么只好返回空了)下面代码为MSDN中的,检测new分配是否成功,内存分配失败处理还可以通过_set_new_handler注册分配异常函数结果

// insufficient_memory_conditions.cpp

// compile with: /EHsc
#include <iostream>
using namespace std;
#define BIG_NUMBER 100000000
int main() {
int *pI = new int[BIG_NUMBER];
if( pI == 0x0 ) {
cout << "Insufficient memory" << endl;
return -1;
}
}
  对于对象使用new操作符的情况,生成的代码执行的流程一般为:先调用内部合适的new函数,该函数最终调用内存分配API进行堆内存分配,同时初始化一些方便内存管理的结构体和数据。成功分配后,将该地址视为this,如有必要则设置虚表指针,之后调用构造函数对该地址处对象进行构造。构造函数一般也是执行初始化功能而已,修改修改数据啥的。这些都是老生常谈不再赘述。
  即使请求的空间是0字节大小,new也会返回不同的地址,也就说总是在不同区域分配。这里注意和空类的区别,空类的大小是1,传给new函数(该函数在之后给出)之后,new函数接受到的参数只会>=1,而对于特殊情况:char* pch=new char[0];new函数接受的参数确实是0,不过分配的空间并不是0字节,因为存在内存管理相关的结构体也会占用内存。
  new操作符有2种作用域,一种是全局new,一种是类作用域new。用户在自定义类中可以重载自定义new函数。代码如下:

#include <malloc.h>

#include <memory.h>
class Blanks
{
public:
Blanks(){}
void *operator new( size_t stAllocateBlock, char chInit );
};
void *Blanks::operator new( size_t stAllocateBlock, char chInit )
{
void *pvTemp = malloc( stAllocateBlock );
if( pvTemp != 0 )
memset( pvTemp, chInit, stAllocateBlock );
return pvTemp;
}
// 对于Blanks对象,全局new操作符已被替换,因此下面的代码将分配sizeof(Blanks)大小的空间并把数据赋值为0xa5
int main()
{
Blanks *a5 = new(0xa5) Blanks;
return a5 != 0;
}
二、new primer plus
  new和delete操作符是通过一种称为自由存储区的内存池分配内存的,而new和delete操作符本身在编译时会由编译器选择合适的new函数和delete函数进行实现。C运行库的new函数会在失败时抛出std::bad_alloc异常,如果要使用不抛出异常的new版本,则需要链接nothrownew.obj,然而一旦链接了该文件,标准C++库中的new就不起作用了。new有2种语法形式

[::] new [placement] new-type-name [new-initializer]

[::] new [placement] ( type-name ) [new-initializer]
2种new函数原型为:

void* operator new( std::size_t _Count ) throw(bad_alloc);

void* operator new( std::size_t _Count, const std::nothrow_t& ) throw( );
void* operator new( std::size_t _Count, void* _Ptr ) throw( );
void *operator new[]( std::size_t _Count ) throw(std::bad_alloc);
void *operator new[]( std::size_t _Count, const std::nothrow_t& ) throw( );
void *operator new[]( std::size_t _Count, void* _Ptr ) throw( );
其用法如下:

#include<new>

#include<iostream>
using namespace std;
class MyClass
{
public:
MyClass( )
{
cout << "Construction MyClass." << this << endl;
};
~MyClass( )
{
imember = 0; cout << "Destructing MyClass." << this << endl;
};
int imember;
};
int main( )
{
// The first form of new delete
MyClass* fPtr = new MyClass;
delete fPtr;
// The second form of new delete
MyClass* fPtr2 = new( nothrow ) MyClass;
delete fPtr2;
// The third form of new delete
char x[sizeof( MyClass )];
MyClass* fPtr3 = new( &x[0] ) MyClass;
fPtr3 -> ~MyClass();
cout << "The address of x[0] is : " << ( void* )&x[0] << endl;
}
Construction MyClass.000B3F30
Destructing MyClass.000B3F30
Construction MyClass.000B3F30
Destructing MyClass.000B3F30
Construction MyClass.0023FC60
Destructing MyClass.0023FC60
The address of x[0] is : 0023FC60
#include <new>
#include <iostream>
using namespace std;
class MyClass {
public:
MyClass() {
cout << "Construction MyClass." << this << endl;
};
~MyClass() {
imember = 0; cout << "Destructing MyClass." << this << endl;
};
int imember;
};
int main() {
// The first form of new delete
MyClass* fPtr = new MyClass[2];
delete[ ] fPtr;
// The second form of new delete
char x[2 * sizeof( MyClass ) + sizeof(int)];
MyClass* fPtr2 = new( &x[0] ) MyClass[2];
fPtr2[1].~MyClass();
fPtr2[0].~MyClass();
cout << "The address of x[0] is : " << ( void* )&x[0] << endl;
// The third form of new delete
MyClass* fPtr3 = new( nothrow ) MyClass[2];
delete[ ] fPtr3;
}
Construction MyClass.00311AEC
Construction MyClass.00311AF0
Destructing MyClass.00311AF0
Destructing MyClass.00311AEC
Construction MyClass.0012FED4
Construction MyClass.0012FED8
Destructing MyClass.0012FED8
Destructing MyClass.0012FED4
The address of x[0] is : 0012FED0
Construction MyClass.00311AEC
Construction MyClass.00311AF0
Destructing MyClass.00311AF0
Destructing MyClass.00311AEC
探究第一种new形式实现
  第一种形式为常规new,MyClass* fPtr1 = new MyClass;

// new.cpp

void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{ // try to allocate size bytes
void *p;
while ((p = malloc(size)) == 0)
if (_callnewh(size) == 0)
{ // report no memory
_THROW_NCEE(_XSTD bad_alloc, );
}
return (p);
}
  从上面new函数实现可以看到是使用malloc函数进行分配,如果失败则调用_callnewh调用注册过的“new操作符失败回调”函数(注册用_set_new_handler),如果原先没注册new失败回调,则抛出bad_alloc异常,可见在默认情况下,该while只会执行1次,仅当自定义new失败回调函数返回true,才可能多次尝试分配。
  该种形式delete实现方式,单步以后vs不能定位到源码,不过我们可以换一种思路,既然知道一定执行析构函数,那么就在析构中下断点,断下后查看反汇编,并执行到上一级调用即可找到delete实现方法,因此看汇编实现,发现是一个名为“scalar deleting destructor”的内部函数:

//

00EB3470 push ebp
00EB3471 mov ebp,esp
00EB3473 sub esp,0CCh
00EB3479 push ebx
00EB347A push esi
00EB347B push edi
00EB347C push ecx
00EB347D lea edi,[ebp-0CCh]
00EB3483 mov ecx,33h
00EB3488 mov eax,0CCCCCCCCh
00EB348D rep stos dword ptr es:[edi]
00EB348F pop ecx //以上部分为debug版API常见头,无需理会
00EB3490 mov dword ptr [this],ecx
00EB3493 mov ecx,dword ptr [this]
00EB3496 call MyClass::~MyClass (0EB1023h) //执行析构
00EB349B mov eax,dword ptr [ebp+8]
00EB349E and eax,1
00EB34A1 je MyClass::`scalar deleting destructor'+3Fh (0EB34AFh) //如果传入参数允许释放则进行调用对应delete函数(对于定位new对应的delete该参数是设置为不允许的)
00EB34A3 mov eax,dword ptr [this]
00EB34A6 push eax
00EB34A7 call operator delete (0EB1154h)
00EB34AC add esp,4
00EB34AF mov eax,dword ptr [this] //以下是无关的收尾工作
00EB34B2 pop edi
00EB34B3 pop esi
00EB34B4 pop ebx
00EB34B5 add esp,0CCh
00EB34BB cmp ebp,esp
00EB34BD call __RTC_CheckEsp (0EB1352h)
00EB34C2 mov esp,ebp
00EB34C4 pop ebp
00EB34C5 ret 4
  执行到call operator delete这行,步入之后转到源码,可以看到使用的是dbgdel.cpp的delete函数。实现如下

// dbgdel.cpp

void operator delete( void *pUserData )
{
_CrtMemBlockHeader * pHead;
RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
if (pUserData == NULL)
return;
_mlock(_HEAP_LOCK); /* 阻塞其他线程*/
__TRY
/* 得到用于内存块信息头指针*/
pHead = pHdr(pUserData);
/* 检查区块类型 */
_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
_free_dbg( pUserData, pHead->nBlockUse );//调用free函数释放内存
__FINALLY
_munlock(_HEAP_LOCK); /* 解锁其他线程*/
__END_TRY_FINALLY
return;
}
探究第二种new形式实现
  第二种方式为不抛出异常的new,MyClass* fPtr2 = new( nothrow ) MyClass;,可见,这里用try块捕获了异常,因此不再抛出异常,余下的就是调用常规new函数而已。

// newopnt.cpp

void * __CRTDECL operator new(size_t count, const std::nothrow_t&) _THROW0()
{ // try to allocate count bytes
void *p;
_TRY_BEGIN
p = operator new(count);
_CATCH_ALL
p = 0;
_CATCH_END
return (p);
}
#define _TRY_BEGIN try {
#define _CATCH(x) } catch (x) {
#define _CATCH_ALL } catch (...) {
#define _CATCH_END }
探究第三种new形式实现
  第三种方式为布局new:
char x1[sizeof( MyClass )];MyClass* fPtr3 = new( &x1[0] ) MyClass;
  这里所谓的布局就是说告诉new我们已经有一个内存位置了:

// new

inline void *__CRTDECL operator new(size_t, void *_Where) _THROW0()
{ // construct array with placement at _Where
return (_Where);
}
  可以发现该new什么都没做,那么为什么还要new呢?仔细想想可以知道,编译器对new的处理是调用new函数后,之后将该地址作为this指针进行初始化操作(比如设置虚表),再调用构造函数,而构造函数这玩意不能直接调用,不像析构函数那样,因为构造之前还没有对象和指针呢,对象和指针是构造以后才有的,而调用析构函数的时候,是已经有对象或指针的。所以这种定位new在我理解,就是可以相当于可以直接构造了。
  从上面可以看到new操作符先调用合适的new函数分配空间,之后调用构造函数构造,而delete函数刚好相对,先进行析构之后调用析构函数析构;同时可以看到布局new操作符的好处是可以手动指定构造和析构的时间,对于new无论哪种形式,在调用new函数分配好内存后都会调用构造函数进行构造,而定位new函数实则是直接返回,这就导致直接使用当前地址进行构造,相当于显示调用构造函数,而析构时由于没有实际分配空间,因此不能用delete,而是显示调用析构函数进行析构。
  上面都是对于有构造函数和析构函数对象的情况,用delete时,编译器会为该类专门生成一个scalar deleting destructor函数,该函数中先进行析构,之后调用operator delete函数。当然,如果没有析构函数,那么就不会有scalar deleting destructor函数了,此时单步是可以看到delete源码的,即dbgdel.cpp中的void operator delete(void *pUserData)函数。这一点在delete用于基本类型时显而易见。

探究第一种new[]形式实现

  第一种类型new,MyClass* fPtr4 = new MyClass[2]

// newaop.cpp

void *__CRTDECL operator new[](size_t count) _THROW1(std::bad_alloc)
{ // try to allocate count bytes for an array
return (operator new(count));
}
  而编译器传给该new[]函数的参数count是sizeof(MyClass[2])+sizeof(int),该sizeof(int)用于内存管理。new仍然调用了new();没有本质区别,即这么多对象占用的内存是当作整体分配的。再分配好之后,就需要对每个对象this指针处进行初始化和构造了。
  通过逆向分析可知先调用了new[],如果成功分配内存,则调用数组构造迭代器vector_constructor_iterator对每个对象进行构造。void* base=new[](sizeof(int)+sizeof(MyClass[2]));,起始4字节存储要初始化的对象个数,剩余空间为对象占用内存

push 0Ch ; count

call j_??_U@YAPAXI@Z ; operator new[](uint)
add esp, 4
mov [ebp+var_1A0], eax
mov [ebp+var_4], 3
cmp [ebp+var_1A0], 0
jz short loc_41851B
mov eax, [ebp+var_1A0]
mov dword ptr [eax], 2
push offset j_??1MyClass@@QAE@XZ ; pDtor
push offset j_??0MyClass@@QAE@XZ ; pCtor
push 2 ; count
push 4 ; size
mov ecx, [ebp+var_1A0]
add ecx, 4
push ecx ; ptr
call j_??_L@YGXPAXIHP6EX0@Z1@Z ; `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))
; ---------------------------------------------------------------------------
mov edx, [ebp+var_1A0]
add edx, 4
mov [ebp+var_22C], edx
jmp short loc_418525
; ---------------------------------------------------------------------------
loc_41851B: ; CODE XREF: _main+1FF j
mov [ebp+var_22C], 0
loc_418525: ; CODE XREF: _main+239 j
mov eax, [ebp+var_22C]
mov [ebp+var_1AC], eax
mov [ebp+var_4], 0FFFFFFFFh
mov ecx, [ebp+var_1AC]
mov [ebp+fPtr4], ecx
if(base)
{
*(int*)base=2;//2个对象
vector_construtor_iterator((MyClass*)((char*)base+4),sizeof(MyClass[2]),2,&MyClass::MyClass,&MyClass::~MyClass);
}
vector_constructor_iterator对应代码为:

; void __stdcall `eh vector constructor iterator'(void *ptr, unsigned int size, int count, void (__thiscall *pCtor)(void *), void (__thiscall *pDtor)(void *))

??_L@YGXPAXIHP6EX0@Z1@Z proc near ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *)) j
success = dword ptr -20h
i = dword ptr -1Ch
ms_exc = CPPEH_RECORD ptr -18h
ptr = dword ptr 8
size = dword ptr 0Ch
count = dword ptr 10h
pCtor = dword ptr 14h
pDtor = dword ptr 18h
push ebp
mov ebp, esp
push 0FFFFFFFEh
push offset stru_41F9A0
push offset j___except_handler4
mov eax, large fs:0
push eax
add esp, 0FFFFFFF0h
push ebx
push esi
push edi
mov eax, ___security_cookie
xor [ebp+ms_exc.registration.ScopeTable], eax
xor eax, ebp
push eax
lea eax, [ebp+ms_exc.registration]
mov large fs:0, eax
mov [ebp+success], 0
mov [ebp+ms_exc.registration.TryLevel], 0
mov [ebp+i], 0
jmp short loc_415730
; ---------------------------------------------------------------------------
loc_415727: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))+67 j
mov eax, [ebp+i]
add eax, 1
mov [ebp+i], eax
loc_415730: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))+45 j
mov ecx, [ebp+i]
cmp ecx, [ebp+count]
jge short loc_415749
mov ecx, [ebp+ptr]
call [ebp+pCtor]
mov edx, [ebp+ptr]
add edx, [ebp+size]
mov [ebp+ptr], edx
jmp short loc_415727
; ---------------------------------------------------------------------------
loc_415749: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))+56 j
mov [ebp+success], 1
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
call $LN9 ; Finally handler 0 for function 4156E0
; ---------------------------------------------------------------------------
loc_41575C: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *)):$LN10 j
jmp short $LN12
; ---------------------------------------------------------------------------
$LN9: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))+77 j
; DATA XREF: .rdata:stru_41F9A0 o
cmp [ebp+success], 0 ; Finally handler 0 for function 4156E0
jnz short $LN10
mov eax, [ebp+pDtor]
push eax ; pDtor
mov ecx, [ebp+i]
push ecx ; count
mov edx, [ebp+size]
push edx ; size
mov eax, [ebp+ptr]
push eax ; ptr
call j_?__ArrayUnwind@@YGXPAXIHP6EX0@Z@Z ; __ArrayUnwind(void *,uint,int,void (*)(void *))
$LN10: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *))+82 j
retn
; ---------------------------------------------------------------------------
$LN12: ; CODE XREF: `eh vector constructor iterator'(void *,uint,int,void (*)(void *),void (*)(void *)):loc_41575C j
mov ecx, [ebp+ms_exc.registration.Next]
mov large fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn 14h
??_L@YGXPAXIHP6EX0@Z1@Z endp
逆向分析得到C++语法:

void __stdcall vector_constructor_iterator(MyClass *objs, unsigned int size, int count, void (__thiscall *pCtor)(void *), void (__thiscall *pDtor)(void *))

{
int i=0;
__try
{
for(;i<count;i++,objs++)
{
objs->pCtor();//用构造函数构造
}
}
__except(1)
{
__ArrayUnwind(objs,size,i,pDtor);//如果某个构造函数产生异常,则进行栈解退,用到析构函数
}
}
  栈解退,这里引用C++ Primer Plus的解释:“现在假设函数由于出现异常而终止(而不是由于返回),则程序也将释放栈中的内存,但不会在释放栈的第一个返回地址后停止,而是继续释放栈,直到找到一个位于try块中的返回地址,随后控制权将转到块尾的异常处理程序,而不会函数调用后面的第一条语句。这个过程称为栈解退,引发机制的一个非常重要的特性是,和函数返回一样,对于栈中的自动类对象,而throw语句则处理try块和throw之间的整个函数调用徐丽放在栈中的对象。如果没有栈解退这种特性,则引发异常后,对于中间函数调用放在栈中的自动类对象,其析构函数将不会被调用。”。unwind就是解退的意思,现在来查看__ArrayUnwind的源码,根据函数名可知该函数用于对象数组解退:

push ebp
mov ebp, esp
push 0FFFFFFFEh
push offset stru_41F9E0
push offset j___except_handler4
mov eax, large fs:0
push eax
sub esp, 8
push ebx
push esi
push edi
mov eax, ___security_cookie
xor [ebp+ms_exc.registration.ScopeTable], eax
xor eax, ebp
push eax
lea eax, [ebp+ms_exc.registration]
mov large fs:0, eax
mov [ebp+ms_exc.old_esp], esp
mov [ebp+ms_exc.registration.TryLevel], 0
loc_41591A: ; CODE XREF: __ArrayUnwind(void *,uint,int,void (*)(void *))+54 j
mov eax, [ebp+count]
sub eax, 1
mov [ebp+count], eax
js short loc_415936
mov ecx, [ebp+ptr]
sub ecx, [ebp+size]
mov [ebp+ptr], ecx
mov ecx, [ebp+ptr]
call [ebp+pDtor]
jmp short loc_41591A
; ---------------------------------------------------------------------------
loc_415936: ; CODE XREF: __ArrayUnwind(void *,uint,int,void (*)(void *))+43 j
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
jmp short loc_415956
; ---------------------------------------------------------------------------
$LN7: ; DATA XREF: .rdata:stru_41F9E0 o
mov edx, [ebp+ms_exc.exc_ptr] ; Exception filter 0 for function 4158E0
push edx ; pExPtrs
call ArrayUnwindFilter
add esp, 4
$LN9_1:
retn
; ---------------------------------------------------------------------------
$LN8_0: ; DATA XREF: .rdata:stru_41F9E0 o
mov esp, [ebp+ms_exc.old_esp] ; Exception handler 0 for function 4158E0
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
loc_415956: ; CODE XREF: __ArrayUnwind(void *,uint,int,void (*)(void *))+5D j
mov ecx, [ebp+ms_exc.registration.Next]
mov large fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn 10h
逆向分析得到C++代码:

void __stdcall __ArrayUnwind(MyClass* objs,unsigned size,int count,void (__thiscall *pDtor)(void*))

{//第[count]对象由于没有构造成功,因此从[count-1]个对象开始析构
__try
{
while(count--)
{
objs--;
objs->pDtor();
}
}
__except(terminate(),0)//如果析构发生异常,则终止程序
{
return;
}
}
探究第一种形式delete[]形式实现
mov eax, [ebp+fPtr4]
mov [ebp+var_188], eax
mov ecx, [ebp+var_188]
mov [ebp+var_194], ecx
cmp [ebp+var_194], 0
jz short loc_418574//如果之前new成功,则往下执行
push 3 ; unsigned int
mov ecx, [ebp+var_194] ; this
call j_??_EMyClass@@QAEPAXI@Z ; MyClass::`vector deleting destructor'(uint)
mov [ebp+var_22C], eax
jmp short loc_41857E
; ---------------------------------------------------------------------------
loc_418574: ; CODE XREF: _main+27D j
mov [ebp+var_22C], 0
  可见vector_deleting_destructor是用来析构对象数组的,原型为void* __thiscall MyClass::vector_deleting_destructor(usigned int flag);,该函数是编译器内部为MyClass类加的成员函数
flag含义未知,所以需要分析该函数源码:

push ebp

mov ebp, esp
sub esp, 0CCh
push ebx
push esi
push edi
push ecx
lea edi, [ebp+var_CC]
mov ecx, 33h
mov eax, 0CCCCCCCCh
rep stosd
pop ecx
mov [ebp+this], ecx
mov eax, [ebp+arg_0]
and eax, 2
jz short loc_413431
push offset j_??1MyClass@@QAE@XZ ; pDtor
mov eax, [ebp+this]
mov ecx, [eax-4]
push ecx ; count
push 4 ; size
mov edx, [ebp+this]
push edx ; ptr
call j_??_M@YGXPAXIHP6EX0@Z@Z ; `eh vector destructor iterator'(void *,uint,int,void (*)(void *))
; ---------------------------------------------------------------------------
mov eax, [ebp+arg_0]
and eax, 1
jz short loc_413429
mov eax, [ebp+this]
sub eax, 4
push eax ; void *
call j_??_V@YAXPAX@Z_0 ; operator delete[](void *)
add esp, 4
loc_413429: ; CODE XREF: MyClass::`vector deleting destructor'(uint)+48 j
mov eax, [ebp+this]
sub eax, 4
jmp short loc_413450
; ---------------------------------------------------------------------------
loc_413431: ; CODE XREF: MyClass::`vector deleting destructor'(uint)+29 j
mov ecx, [ebp+this] ; this
call j_??1MyClass@@QAE@XZ ; MyClass::~MyClass(void)
mov eax, [ebp+arg_0]
and eax, 1
jz short loc_41344D
mov eax, [ebp+this]
push eax ; void *
call j_??3@YAXPAX@Z_0 ; operator delete(void *)
add esp, 4
loc_41344D: ; CODE XREF: MyClass::`vector deleting destructor'(uint)+6F j
mov eax, [ebp+this]
loc_413450: ; CODE XREF: MyClass::`vector deleting destructor'(uint)+5F j
pop edi
pop esi
pop ebx
add esp, 0CCh
cmp ebp, esp
call j___RTC_CheckEsp
mov esp, ebp
pop ebp
retn 4
经过逆向分析得到C++代码:

void* __thiscall MyClass::vector_deleting_destructor(usigned int flag)

{
if(flag&2)//由于push的是3,因此这里成立
{
vector_destructor_iterator(this,sizeof(MyClass),*(int*)((char*)this-4),MyClass::~MyClass);
if(flag&1))//由于push的是3,因此这里成立
{
delete[]((char*)this-4);
}
}
else
{
this->~MyClass();
if(flag&1)
{
delete(this);
}
}
}
仅从以上代码可以分析出以下几点:

1.this-4这个地址为之前new成功分配所返回值,可以将其看成sizeof(int)+sizeof(MyClass[2])大小的结构体,第一个成员为对象个数。

2.该函数对数组和非数组进行了分别处理,可以分析出第2个二进制位为1时,是析构对象数组,为0时是析构普通对象。而第1个二进制位是规定是否释放内存,可以想象如果这里是定位new,那么这里是不应该释放的。
3.vector_destructor_iterator起实际析构作用原型void __stdcall vector_destructor_iterator(MyClass *objs, unsigned int size, int count, void (__thiscall *pDtor)(void *));,下面来看该函数
push ebp
mov ebp, esp
push 0FFFFFFFEh
push offset stru_41F9C0
push offset j___except_handler4
mov eax, large fs:0
push eax
add esp, 0FFFFFFF4h
push ebx
push esi
push edi
mov eax, ___security_cookie
xor [ebp+ms_exc.registration.ScopeTable], eax
xor eax, ebp
push eax
lea eax, [ebp+ms_exc.registration]
mov large fs:0, eax
mov [ebp+success], 0
mov eax, [ebp+size]
imul eax, [ebp+count]
add eax, [ebp+ptr]
mov [ebp+ptr], eax
mov [ebp+ms_exc.registration.TryLevel], 0
loc_41580B: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *))+65 j
mov ecx, [ebp+count]
sub ecx, 1
mov [ebp+count], ecx
js short loc_415827
mov edx, [ebp+ptr]
sub edx, [ebp+size]
mov [ebp+ptr], edx
mov ecx, [ebp+ptr]
call [ebp+pDtor]
jmp short loc_41580B
; ---------------------------------------------------------------------------
loc_415827: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *))+54 j
mov [ebp+success], 1
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
call $LN8 ; Finally handler 0 for function 4157C0
; ---------------------------------------------------------------------------
loc_41583A: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *)):$LN9_0 j
jmp short $LN11
; ---------------------------------------------------------------------------
$LN8: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *))+75 j
; DATA XREF: .rdata:stru_41F9C0 o
cmp [ebp+success], 0 ; Finally handler 0 for function 4157C0
jnz short $LN9_0
mov eax, [ebp+pDtor]
push eax ; pDtor
mov ecx, [ebp+count]
push ecx ; count
mov edx, [ebp+size]
push edx ; size
mov eax, [ebp+ptr]
push eax ; ptr
call j_?__ArrayUnwind@@YGXPAXIHP6EX0@Z@Z ; __ArrayUnwind(void *,uint,int,void (*)(void *))
$LN9_0: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *))+80 j
retn
; ---------------------------------------------------------------------------
$LN11: ; CODE XREF: `eh vector destructor iterator'(void *,uint,int,void (*)(void *)):loc_41583A j
mov ecx, [ebp+ms_exc.registration.Next]
mov large fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
retn 10h
经过逆向分析得到C++代码:

void __stdcall vector_destructor_iterator(MyClass *objs, unsigned int size, int count, void (__thiscall *pDtor)(void *))

{
int i=0;
__try
{
MyClass* last=objs+size-1;//从最后一个对象开始析构
while(count--)
{
last->pDtor();
last--;
}
}
__except(1)
{
__ArrayUnwind(objs,size,count,pDtor);//如果某个析构函数产生异常,则跳过该对象,继续析构之前的对象
}
}
  鉴于__ArrayUnwind前面已经介绍过,这里就不分析了。如果仔细分析上一节开头给出main汇编代码,会发现只要new成功了,delete都会去执行析构,即使出现对象数组中某个对象构造失败导致已经进行析构,delete时所有元素仍会析构一次。

探究第二种情况new[]形式实现

MyClass* fPtr5 = new( nothrow ) MyClass[2];

// newaopnt.cpp

void * __CRTDECL operator new[](::size_t count, const std::nothrow_t& x)
_THROW0()
{ // try to allocate count bytes for an array
return (operator new(count, x));
}
可见调用了单对象的第二种new形式,与非数组形式类似,不再赘述

探究第三种情况new[]形式实现

char x2[2*sizeof( MyClass ) + sizeof(int)];
MyClass* fPtr6 = new ( &x2[0] ) MyClass[2];
inline void *__CRTDECL operator new[](size_t, void *_Where) _THROW0()
{ // construct array with placement at _Where
return (_Where);
}
  可见等同于对象第三种new形式,不再赘述。下面我们来看看其他内存分配函数

malloca

void* _malloca(size_t size);
  MSDN里是这么描述的:在栈上分配内存,是_alloca的安全性增强版本。返回指针是根据对象大小对齐,如果size是0则返回长度0的合法指针。如果地址空间无法分配会抛出一个栈溢出异常,该异常不是C++异常,需要使用SEH。_malloca和_alloca的区别在于_alloc无论大小总是在栈上分配,且无需free释放内存。而_malloca需要使用_freea释放内存,在调试模式下,_malloca总是在堆上分配。在异常处理时显式调用_malloca有一些限制,x86架构处理器异常处理例程会自动控制函数栈帧,在执行操作时并不基于当前闭合函数栈帧,这一点在Windows NT SEH和C++异常处理的catch语句中很常见。因此在以下情况显示调用_malloca,在执行异常处理例程后会产生程序崩溃。
  Windows NT SEH异常过滤表达式:__except(_malloca())
  Windows NT SEH最终执行表达式:__finally(_malloca())
  C++ 异常处理 catch语句
  然而_malloca可以从异常处理例程中除上述情况以外的情况下直接调用,或在异常处理所触发的回调函数中调用也是允许的。先来看一个例子:

#include <windows.h>

#include <stdio.h>
#include <malloc.h>
int main()
{
int size;
int numberRead = 0;
int errcode = 0;
void *p = NULL;
void *pMarker = NULL;
while (numberRead == 0)
{
printf_s("Enter the number of bytes to allocate "
"using _malloca: ");
numberRead = scanf_s("%d", &size);
}
// Do not use try/catch for _malloca,
// use __try/__except, since _malloca throws
// Structured Exceptions, not C++ exceptions.
__try
{
if (size > 0)
{
p = _malloca( size );
}
else
{
printf_s("Size must be a positive number.");
}
_freea( p );
}
// Catch any exceptions that may occur.
__except( GetExceptionCode() == STATUS_STACK_OVERFLOW )
{
printf_s("_malloca failed!\n");
// If the stack overflows, use this function to restore.
errcode = _resetstkoflw();
if (errcode)
{
printf("Could not reset the stack!");
_exit(1);
}
};
}
// malloc.h
#define _ALLOCA_S_THRESHOLD 1024
#define _ALLOCA_S_STACK_MARKER 0xCCCC
#define _ALLOCA_S_HEAP_MARKER 0xDDDD
#if defined(_M_IX86)
#define _ALLOCA_S_MARKER_SIZE 8
#elif defined(_M_X64)
#define _ALLOCA_S_MARKER_SIZE 16
#elif defined(_M_ARM)
#define _ALLOCA_S_MARKER_SIZE 8
#elif !defined (RC_INVOKED)
#error Unsupported target platform.
#endif
......
#if !defined(__midl) && !defined(RC_INVOKED)
#pragma warning(push)
#pragma warning(disable:6540)
__inline void *_MarkAllocaS(_Out_opt_ __crt_typefix(unsigned int*) void *_Ptr, unsigned int _Marker)
{
if (_Ptr)
{
*((unsigned int*)_Ptr) = _Marker;
_Ptr = (char*)_Ptr + _ALLOCA_S_MARKER_SIZE;
}
return _Ptr;
}
#pragma warning(pop)
#endif
#if defined(_DEBUG)
#if !defined(_CRTDBG_MAP_ALLOC)
#undef _malloca
#define _malloca(size) \
__pragma(warning(suppress: 6255)) \
_MarkAllocaS(malloc((size) + _ALLOCA_S_MARKER_SIZE), _ALLOCA_S_HEAP_MARKER)
#endif
#else
#undef _malloca
#define _malloca(size) \
__pragma(warning(suppress: 6255)) \
((((size) + _ALLOCA_S_MARKER_SIZE) <= _ALLOCA_S_THRESHOLD) ? \
_MarkAllocaS(_alloca((size) + _ALLOCA_S_MARKER_SIZE), _ALLOCA_S_STACK_MARKER) : \
_MarkAllocaS(malloc((size) + _ALLOCA_S_MARKER_SIZE), _ALLOCA_S_HEAP_MARKER))
#endif
  可以分析出DEBUG版下,宏调用了malloc进行分配,之后使用_MarkAllocaS对分配内存进行一些处理(后面讨论),而RELEASE版下,宏先判断要分配的内存是否过大,该门限为_ALLOCA_S_THRESHOLD-_ALLOCA_S_MARKER_SIZE=1016,如果超过该值则调用malloc,否则调用_alloca。从字面意思上可以知道_ALLOCA_S_HEAP_MARKER这个标志位说明该内存区是在堆上分配的,而_ALLOCA_S_STACK_MARKER标志是在栈上分配的。在malloc或_alloca分配成功后,总会调用_MarkAllocaS进行调整。结合字面意思和5行C语言代码可知,在执行过内存分配后,返回的指针前sizeof(unigned int*)字节为分配内存类型标志,之后指针调整到空闲位置丢给用户操作。那么所有的问题都落在_alloca和malloc的源码上,下面会进行分析。
  _alloca(我第一次见栈上分配内存是在逆向一个易语言程序时,用的是sub esp,而微软这个函数是第一次见)void* _alloca(size_t size);,该函数只在程序栈中分配字节,而函数退出时该空间会自动释放,因此无需手动释放。用此函数的限制和_malloca相同。

#include <windows.h>

#include <stdio.h>
#include <malloc.h>
int main()
{
int size = 1000;
int errcode = 0;
void *pData = NULL;
// 注意:不要使用try/catch,而要使用__try/__except,因为_alloca抛出SEH而不是C++异常
__try {
// 使用_alloca分配太大的空间很容易崩溃,推荐1024字节以下的空间
if (size > 0 && size < 1024)
{
pData = _alloca( size );
printf_s( "Allocated %d bytes of stack at 0x%p",
size, pData);
}
else
{
printf_s("Tried to allocate too many bytes.\n");
}
}
// 如果溢出
__except( GetExceptionCode() == STATUS_STACK_OVERFLOW )
{
printf_s("_alloca failed!\n");
// 使用下面的函数恢复函数栈
errcode = _resetstkoflw();
if (errcode)
{
printf_s("Could not reset the stack!\n");
_exit(1);
}
};
}
来看反汇编

; int __cdecl main()

_main proc near ; CODE XREF: j__main j
pAllocaBase = dword ptr -120h
cbSize = dword ptr -11Ch
var_114 = dword ptr -114h
allocaList = dword ptr -48h
pData = dword ptr -3Ch
errcode = dword ptr -30h
size = dword ptr -24h
var_1C = dword ptr -1Ch
ms_exc = CPPEH_RECORD ptr -18h
push ebp
mov ebp, esp
push 0FFFFFFFEh
push offset stru_416F80
push offset j___except_handler4
mov eax, large fs:0
push eax
add esp, 0FFFFFEF0h
push ebx
push esi
push edi
lea edi, [ebp+pAllocaBase]
mov ecx, 42h
mov eax, 0CCCCCCCCh
rep stosd
mov eax, ___security_cookie
xor [ebp+ms_exc.registration.ScopeTable], eax
xor eax, ebp
mov [ebp+var_1C], eax
push eax
lea eax, [ebp+ms_exc.registration]
mov large fs:0, eax
mov [ebp+ms_exc.old_esp], esp
mov [ebp+allocaList], 0
mov [ebp+size], 3E8h
mov [ebp+errcode], 0
mov [ebp+pData], 0
mov [ebp+ms_exc.registration.TryLevel], 0
cmp [ebp+size], 0
jle short loc_4114D3
cmp [ebp+size], 400h
jge short loc_4114D3
mov eax, [ebp+size]
add eax, 24h
mov [ebp+cbSize], eax
mov eax, [ebp+cbSize]
call j___alloca_probe_16
mov [ebp+pAllocaBase], esp
mov [ebp+ms_exc.old_esp], esp
lea ecx, [ebp+allocaList]
push ecx ; pAllocaInfoList
mov edx, [ebp+cbSize] ; cbSize
mov ecx, [ebp+pAllocaBase] ; pAllocaBase
call j_@_RTC_AllocaHelper@12 ; _RTC_AllocaHelper(x,x,x)
add [ebp+pAllocaBase], 20h
mov edx, [ebp+pAllocaBase]
mov [ebp+pData], edx
mov esi, esp
mov eax, [ebp+pData]
push eax
mov ecx, [ebp+size]
push ecx
push offset Format ; "Allocated %d bytes of stack at 0x%p"
call ds:__imp__printf_s
add esp, 0Ch
cmp esi, esp
call j___RTC_CheckEsp
jmp short loc_4114EA
; ---------------------------------------------------------------------------
loc_4114D3: ; CODE XREF: _main+72 j
; _main+7B j
mov esi, esp
push offset aTriedToAllocat ; "Tried to allocate too many bytes.\n"
call ds:__imp__printf_s
add esp, 4
cmp esi, esp
call j___RTC_CheckEsp
loc_4114EA: ; CODE XREF: _main+E1 j
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
jmp loc_41158D
; ---------------------------------------------------------------------------
$LN10: ; DATA XREF: .rdata:stru_416F80 o
mov eax, [ebp+ms_exc.exc_ptr] ; Exception filter 0 for function 4113F0
mov ecx, [eax]
mov edx, [ecx]
mov [ebp+var_114], edx
cmp [ebp+var_114], 0C00000FDh
jnz short loc_41151B
mov [ebp+cbSize], 1
jmp short loc_411525
; ---------------------------------------------------------------------------
loc_41151B: ; CODE XREF: _main+11D j
mov [ebp+cbSize], 0
loc_411525: ; CODE XREF: _main+129 j
mov eax, [ebp+cbSize]
$LN12:
retn
; ---------------------------------------------------------------------------
$LN11: ; DATA XREF: .rdata:stru_416F80 o
mov esp, [ebp+ms_exc.old_esp] ; Exception handler 0 for function 4113F0
mov esi, esp
push offset a_allocaFailed ; "_alloca failed!\n"
call ds:__imp__printf_s
add esp, 4
cmp esi, esp
call j___RTC_CheckEsp
mov esi, esp
call ds:__imp___resetstkoflw
cmp esi, esp
call j___RTC_CheckEsp
mov [ebp+errcode], eax
cmp [ebp+errcode], 0
jz short loc_411586
mov esi, esp
push offset aCouldNotResetT ; "Could not reset the stack!\n"
call ds:__imp__printf_s
add esp, 4
cmp esi, esp
call j___RTC_CheckEsp
mov esi, esp
push 1 ; Code
call ds:__imp___exit
; ---------------------------------------------------------------------------
cmp esi, esp
call j___RTC_CheckEsp
loc_411586: ; CODE XREF: _main+16C j
mov [ebp+ms_exc.registration.TryLevel], 0FFFFFFFEh
loc_41158D: ; CODE XREF: _main+101 j
jmp short loc_411591
; ---------------------------------------------------------------------------
jmp short loc_411593
; ---------------------------------------------------------------------------
loc_411591: ; CODE XREF: _main:loc_41158D j
xor eax, eax
loc_411593: ; CODE XREF: _main+19F j
push edx
mov ecx, ebp ; frame
push eax
lea edx, v ; v
push [ebp+allocaList] ; allocaList
call j_@_RTC_CheckStackVars2@12 ; _RTC_CheckStackVars2(x,x,x)
pop eax
pop edx
lea esp, [ebp-130h]
mov ecx, [ebp+ms_exc.registration.Next]
mov large fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov ecx, [ebp+var_1C]
xor ecx, ebp ; cookie
call j_@__security_check_cookie@4 ; __security_check_cookie(x)
mov esp, ebp
pop ebp
retn
mov eax, [ebp+size]
add eax, 24h
mov [ebp+cbSize], eax
mov eax, [ebp+cbSize]
call j___alloca_probe_16
mov [ebp+pAllocaBase], esp
mov [ebp+ms_exc.old_esp], esp
lea ecx, [ebp+allocaList]
push ecx ; pAllocaInfoList
mov edx, [ebp+cbSize] ; cbSize
mov ecx, [ebp+pAllocaBase] ; pAllocaBase
call j_@_RTC_AllocaHelper@12 ; _RTC_AllocaHelper(x,x,x)
add [ebp+pAllocaBase], 20h
mov edx, [ebp+pAllocaBase]
mov [ebp+pData], edx
  很疑惑地,在__alloca_probe_16调用之前,发生了add eax,24h和mov eax,[ebp+cbSize],而在之后发生了mov [ebp+pAllocaBase], esp,那么大胆做出猜测:

1.add eax,24h,说明这24h字节用来实现内存管理或字节对齐之类功能

2.__alloca_probe_16为接受一个参数的函数,该参数通过eax传递,进行的操作是修改esp,因此esp可以看做执行结果
3.另一个函数原型为void __fastcall _RTC_AllocaHelper(_RTC_ALLOCA_NODE *pAllocaBase, unsigned int cbSize, _RTC_ALLOCA_NODE **pAllocaInfoList),反汇编得到
; void __fastcall _RTC_AllocaHelper(_RTC_ALLOCA_NODE *pAllocaBase, unsigned int cbSize, _RTC_ALLOCA_NODE **pAllocaInfoList)
@_RTC_AllocaHelper@12 proc near ; CODE XREF: _RTC_AllocaHelper(x,x,x) j
pAllocaInfoList = dword ptr 8
pAllocaBase = ecx
cbSize = edx
push ebp
mov ebp, esp
push ebx
push esi
mov esi, pAllocaBase
mov ebx, cbSize
test esi, esi
jz short loc_4116CC
test ebx, ebx
jz short loc_4116CC
mov cbSize, [ebp+pAllocaInfoList]
test cbSize, cbSize
jz short loc_4116CC
push edi
mov al, 0CCh
mov edi, esi
mov pAllocaBase, ebx
rep stosb
mov eax, [cbSize]
mov [esi+4], eax
mov [esi+0Ch], ebx
mov [cbSize], esi
pop edi
loc_4116CC: ; CODE XREF: _RTC_AllocaHelper(x,x,x)+B j
; _RTC_AllocaHelper(x,x,x)+F j ...
pop esi
pop ebx
pop ebp
retn 4
@_RTC_AllocaHelper@12 endp
逆向分析得道C++代码:

void main()

{
......
int size=1024,cbsize=size+sizeof(_RTC_ALLOCA_NODE)+4;
_RTC_ALLOCA_NODE* pAllocaBase=__alloca_probe_16(cbsize);
_RTC_AllocaHelper(pAllocaBase,cbsize,NULL);
void* pData=(void*)(pAllocaBase+1);
......
}
//这个结构体来自于reactos
#pragma pack(push,1)
typedef struct _RTC_ALLOCA_NODE
{
__int32 guard1;
struct _RTC_ALLOCA_NODE *next;
#if (defined(_X86_) && !defined(__x86_64))
__int32 dummypad;
#endif
size_t allocaSize;
#if (defined(_X86_) && !defined(__x86_64))
__int32 dummypad2;
#endif
__int32 guard2[3];
}_RTC_ALLOCA_NODE;
#pragma pack(pop)
void __fastcall _RTC_AllocaHelper(_RTC_ALLOCA_NODE *pAllocaBase, unsigned int cbSize, _RTC_ALLOCA_NODE **pAllocaInfoList)
{//初始化已分配空间,可以用于维护调试版函数栈
if(pAllocaBase && cbSize && pAllocaInfoList)//由于最后一个参数在本例中为0,这个函数实际相当于没有执行
{
memset(pAllocaBase,0xCC,cbSize);//经常在调试版程序栈空间看到0xCC "烫烫烫烫烫" 对吧,就是这样的。。。
pAllocaBase->next=*pAllocaInfoList;//链接到前一个结构;
pAllocaBase->allocaSize=cbSize;
*pAllocaInfoList=pAllocaBase;//自此可知,上述结构形成链表,pAllocaInfoList指向当前结构
}
}
//__alloca_probe_16代码下面会进行分析
  以上是debug版的情况,如果尝试用release版查看反汇编代码,会发现只有push和call __alloca_probe_16部分,可知add eax,24和AllocaHelper只是调试版本用于内存管理的。所以重点落在该函数的解析上。进入源代码查看,__alloca_probe_16用来按16字节对齐内存,而chkstk子例程进行实际分配操作:

// alloca16.asm

; _alloca_probe_16, _alloca_probe_8 - 按8/16字节对齐例程
;输入:EAX = 栈帧大小
;输出:调整EAX,修改esp.
public _alloca_probe_8
_alloca_probe_16 proc ; 16 byte aligned alloca
push ecx
lea ecx, [esp] + 8 ; 父函数栈顶(call _alloca_probe_16和push ecx)
sub ecx, eax ;
and ecx, (16 - 1) ; 计算地址低4位未对齐偏移
add eax, ecx ; 增加cbSize使其对齐
sbb ecx, ecx ; 如果cbSize溢出,ecx = 0xFFFFFFFF,否则ecx = 0
or eax, ecx ; 如果溢出,则eax = 0xFFFFFFFF
pop ecx ; 还原ecx
jmp _chkstk ; eax存储修正cbSize,并交给_chkstk处理
_alloca_probe_16 endp
end
public _alloca_probe
_chkstk proc
_alloca_probe = _chkstk
push ecx
lea ecx, [esp] + 8 - 4 ; 考虑到之后的ret指令对未来esp的修改
sub ecx, eax ; 分配栈空间,ecx存储更新后的栈位置
sbb eax, eax ; 如果申请空间过大,eax = 0xFFFFFFFF,否则eax = 0
not eax ;
and ecx, eax ; ecx = 0 | ecx = ecx
mov eax, esp ;
and eax, not ( _PAGESIZE_ - 1) ; 得到当前栈位置所处页面地址
cs10:
cmp ecx, eax ;
jb short cs20 ; 如果新的栈位置小于页面地址
mov eax, ecx ;
pop ecx
xchg esp, eax ; 更新esp,原始esp存储在eax中
mov eax, dword ptr [eax] ; 当前esp指向返回地址
mov dword ptr [esp], eax ; 修正函数栈帧,使其可以正确返回
ret
cs20:
sub eax, _PAGESIZE_ ; 获取上一个页面
test dword ptr [eax],eax ; 探测页面权限
jmp short cs10 ; 如果没有产生异常则跳转,如果出现异常,则直接进入父函数的异常处理中
_chkstk endp
end
calloc
void* calloc(size_t num,size_t size);
  calloc用来分配数组空间,同样返回指针是根据对象类型对齐的,每个对象都被初始化为0,如果待分配内存超过_HEAP_MAXREQ或分配失败则设置errno为ENOMEM,calloc内部调用了malloc函数使用_set_new_mode函数设置回调模式,该回调用于处理分配失败情况,默认情况下,分配失败后malloc不会调用新回调分配内存,然后我们可以通过提前调用_set_new_mode(1)或者链接NEWMODE.OBJ修改这种默认行为.calloc用法如下:

#include <stdio.h>

#include <malloc.h>
int main( void )
{
long *buffer;
buffer = (long *)calloc( 40, sizeof( long ) );
if( buffer != NULL )
printf( "Allocated 40 long integers\n" );
else
printf( "Can't allocate memory\n" );
free( buffer );
}
Calloc源码:

// calloc.c和calloc_impl.c

void * __cdecl _calloc_base (size_t num, size_t size)
{
int errno_tmp = 0;
void * pv = _calloc_impl(num, size, &errno_tmp);
if ( pv == NULL && errno_tmp != 0 && _errno())
{
errno = errno_tmp; // recall, #define errno *_errno()
}
return pv;
}
void * __cdecl _calloc_impl (size_t num, size_t size, int * errno_tmp)
{
size_t size_orig;
void * pvReturn;
/* ensure that (size * num) does not overflow */
if (num > 0)
{
_VALIDATE_RETURN_NOEXC((_HEAP_MAXREQ / num) >= size, ENOMEM, NULL);
}
size_orig = size = size * num;
/* force nonzero size */
if (size == 0)
size = 1;
for (;;)
{
pvReturn = NULL;
if (size <= _HEAP_MAXREQ)
{
if (pvReturn == NULL)
pvReturn = HeapAlloc(_crtheap, HEAP_ZERO_MEMORY, size);
}
if (pvReturn || _newmode == 0)
{
RTCCALLBACK(_RTC_Allocate_hook, (pvReturn, size_orig, 0));
if (pvReturn == NULL)
{
if ( errno_tmp )
*errno_tmp = ENOMEM;
}
return pvReturn;
}
/* call installed new handler */
if (!_callnewh(size))
{
if ( errno_tmp )
*errno_tmp = ENOMEM;
return NULL;
}
/* new handler was successful -- try to allocate again */
}
}
  现在来分析_calloc_impl执行流程:

1.先检查申请大小是否超出门限,若申请大小为0则强制为1

2.使用HeapAlloc分配内存并清零。如果成功则返回,否则执行_callnewh,即定义的失败处理函数,如果该回调函数返回0则原函数返回0退出,如果该回调函数返回非0,则原函数重复执行2直到成功。(_callnewh最终调用了NtQueryInformationProcess 0x24)
  可见calloc并没有像MSDN说的那样调用了malloc。。。另外,没看到有异常处理机制。

_expand

  用于扩展或缩小已分配内存,用于改变已分配内存区大小。void* _expand(void* memblock,size_t newsize);
  该函数会检测地址的内存权限,如果不通过移动内存无法得到足够的空间,该函数会返回空,该函数不会分配小于请求大小的内存区。该函数不通过移动内存块的方式增缩已分配堆内存,在64位下该函数不会缩小内存区,大小小于16k的内存块都是在低碎片堆中分配的,在这种情况下_expand不会对内存块做任何变动直接返回memblock。同样该函数会检测参数合法性,且size不能超过门限值_HEAP_MAXREQ。

#include <stdio.h>

#include <malloc.h>
#include <stdlib.h>
int main( void )
{
char *bufchar;
printf( "Allocate a 512 element buffer\n" );
if( (bufchar = (char *)calloc( 512, sizeof( char ) )) == NULL )
exit( 1 );
printf( "Allocated %d bytes at %Fp\n",
_msize( bufchar ), (void *)bufchar );
if( (bufchar = (char *)_expand( bufchar, 1024 )) == NULL )
printf( "Can't expand" );
else
printf( "Expanded block to %d bytes at %Fp\n",
_msize( bufchar ), (void *)bufchar );
// Free memory
free( bufchar );
exit( 0 );
}
expand源码为:

void * __cdecl _expand_base (void * pBlock, size_t newsize)

{
void * pvReturn;
size_t oldsize;
/* validation section */
_VALIDATE_RETURN(pBlock != NULL, EINVAL, NULL);
if (newsize > _HEAP_MAXREQ) {
errno = ENOMEM;
return NULL;
}
if (newsize == 0)
{
newsize = 1;
}
oldsize = (size_t)HeapSize(_crtheap, 0, pBlock);
pvReturn = HeapReAlloc(_crtheap, HEAP_REALLOC_IN_PLACE_ONLY, pBlock, newsize);
if (pvReturn == NULL)
{
/* 如果使用了低碎片堆则返回原指针. */
if (oldsize <= 0x4000 /* 低碎片堆最多申请16KB内存 */
&& newsize <= oldsize && _is_LFH_enabled())
pvReturn = pBlock;
else
errno = _get_errno_from_oserr(GetLastError());
}
if (pvReturn)
{
RTCCALLBACK(_RTC_Free_hook, (pBlock, 0));
RTCCALLBACK(_RTC_Allocate_hook, (pvReturn, newsize, 0));
}
return pvReturn;
}
  可见_expand函数最终调用了HeapReAlloc函数。
  一个小插曲:其实这些内存管理的库函数普遍使用debug和release两个版本,debug源码在dbg*.c(pp)中可以找到,同时调试的时候是可以直接定位进去的,而release版函数通常在函数名所在文件,比如delete在delete.cpp中;而debug版源码内存管理函数通常会有一种_CrtMemBlockHeader的结构体,这些都需要自己摸索。

realloc

源码:

void * __cdecl _realloc_base (void * pBlock, size_t newsize)

{
void * pvReturn;
size_t origSize = newsize;
// if ptr is NULL, call malloc
if (pBlock == NULL)
return(_malloc_base(newsize));
// if ptr is nonNULL and size is zero, call free and return NULL
if (newsize == 0)
{
_free_base(pBlock);
return(NULL);
}
for (;;) {
pvReturn = NULL;
if (newsize <= _HEAP_MAXREQ)
{
if (newsize == 0)
newsize = 1;
pvReturn = HeapReAlloc(_crtheap, 0, pBlock, newsize);
}
else
{
_callnewh(newsize);
errno = ENOMEM;
return NULL;
}
if ( pvReturn || _newmode == 0)
{
if (pvReturn)
{
RTCCALLBACK(_RTC_Free_hook, (pBlock, 0));
RTCCALLBACK(_RTC_Allocate_hook, (pvReturn, newsize, 0));
}
else
{
errno = _get_errno_from_oserr(GetLastError());
}
return pvReturn;
}
// call installed new handler
if (!_callnewh(newsize))
{
errno = _get_errno_from_oserr(GetLastError());
return NULL;
}
// new handler was successful -- try to allocate again
}
}
得到realloc->HeapReAlloc

malloc

源码:

void * __cdecl _malloc_base (size_t size)

{
void *res = NULL;
// validate size
if (size <= _HEAP_MAXREQ) {
for (;;) {
// allocate memory block
res = _heap_alloc(size);
// if successful allocation, return pointer to memory
// if new handling turned off altogether, return NULL
if (res != NULL)
{
break;
}
if (_newmode == 0)
{
errno = ENOMEM;
break;
}
// call installed new handler
if (!_callnewh(size))
break;
// new handler was successful -- try to allocate again
}
} else {
_callnewh(size);
errno = ENOMEM;
return NULL;
}
RTCCALLBACK(_RTC_Allocate_hook, (res, size, 0));
if (res == NULL)
{
errno = ENOMEM;
}
return res;
}
__forceinline void * __cdecl _heap_alloc (size_t size)
{
if (_crtheap == 0) {
_FF_MSGBANNER(); /* write run-time error banner */
_NMSG_WRITE(_RT_CRT_NOTINIT); /* write message */
__crtExitProcess(255); /* normally _exit(255) */
}
return HeapAlloc(_crtheap, 0, size ? size : 1);
}
得到malloc->_heap_alloc->HeapAlloc

free

源码:

void __cdecl _free_base (void * pBlock)

{
int retval = 0;
if (pBlock == NULL)
return;
RTCCALLBACK(_RTC_Free_hook, (pBlock, 0));
retval = HeapFree(_crtheap, 0, pBlock);
if (retval == 0)
{
errno = _get_errno_from_oserr(GetLastError());
}
}
得到free->HeapFree

现在所有问题都集中在了HeapAlloc HeapFree HeapReAlloc上

---------------------
作者:weixin_33809981
来源:CSDN
原文:https://blog.csdn.net/weixin_33809981/article/details/86787854
版权声明:本文为博主原创文章,转载请附上博文链接!

转载于:https://www.cnblogs.com/Fightingbirds/p/10831802.html

你可能感兴趣的文章
microbit巡线小车 BoBBoT
查看>>
我的友情链接
查看>>
java基础(二)
查看>>
字符编码笔记:ASCII,Unicode和UTF-8
查看>>
catia三维设计与汽配行业的关系
查看>>
shiro与cas集成后,重定向登录页流程
查看>>
可变参数my_print 的实现
查看>>
CentOS Linux解决Device eth0 does not seem to be present
查看>>
Caching Tutorial for Web Authors and Webmasters
查看>>
Maven实战(四)——基于Maven的持续集成实践
查看>>
如何快速熟悉一个项目
查看>>
如何保证消息的顺序性?
查看>>
yum工具使用举例
查看>>
sftp多用户不同权限配置过程
查看>>
我的友情链接
查看>>
linux下yum常用方法及本地yum仓库的搭建
查看>>
30、OSPF网络类型
查看>>
Tcpdump 高级捕捉过滤器
查看>>
在数据库中增加了字段,要更改的地方
查看>>
Android Drawable 和String 相互转化
查看>>